Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells
نویسندگان
چکیده
UNLABELLED BACKGROUND Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver; these include reduced insulin-stimulated glucose transport, reduced expression of GLUT4, altered expression of adipokines, and adipocyte hypertrophy. Animal studies have shown that expansion of adipose tissue alone is not sufficient to cause systemic insulin resistance in the absence of adipose tissue metabolic dysfunction. To determine if this holds true for humans, we studied the relationship between insulin resistance and markers of adipose tissue dysfunction in non-obese individuals. METHOD 32 non-obese first-degree relatives of Type 2 diabetic patients were recruited. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was measured with the hyperinsulinaemic-euglycaemic clamp. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene/protein expression and adipocyte cell size measurements. RESULTS Our findings show that also in non-obese individuals low insulin sensitivity is associated with signs of adipose tissue metabolic dysfunction characterized by low expression of GLUT4, altered adipokine profile and enlarged adipocyte cell size. In this group, insulin sensitivity is positively correlated to GLUT4 mRNA (R = 0.49, p = 0.011) and protein (R = 0.51, p = 0.004) expression, as well as with circulating adiponectin levels (R = 0.46, 0 = 0.009). In addition, insulin sensitivity is inversely correlated to circulating RBP4 (R = -0.61, 0 = 0.003) and adipocyte cell size (R = -0.40, p = 0.022). Furthermore, these features are inter-correlated and also associated with other clinical features of the metabolic syndrome in the absence of obesity. No association could be found between the hypertrophy-associated adipocyte dysregulation and HIF-1alpha in this group of non-obese individuals. CONCLUSIONS In conclusion, these findings support the concept that it is not obesity per se, but rather metabolic dysfunction of adipose tissue that is associated with systemic insulin resistance and the metabolic syndrome.
منابع مشابه
Association of some dietary intakes, anthropometric measurements and insulin resistance with the relative P53 gene expression in visceral and subcutaneous adipose tissue in obese, and non-obese subjects
Background and Objectives: The P53 is one of the genes involved in weight management. This study investigated associations of dietary intakes, anthropometric measurements and insulin resistance with relative P53 gene expressions. Materials & Methods: Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were collected from 151 individuals, aging nearly 40 years, who underwent el...
متن کاملThe Association of Omentin Gene Expression in Visceral and Subcutaneous Adipose Tissues with Plasma Fatty Acids Profile and Dietary Fatty Acids
Introduction: Omentin, an adipokine, with anti-inflammatory effects reduces insulin resistance, and can hence, play an important role in prevention of cardiovascular disease and diabetes. The present study aimed to investigate the association of plasma and dietary fatty acids with gene expression of omentin in visceral and subcutaneous adipose tissues. Materials and Methods: Visceral and subcut...
متن کاملThe Association of Daily Physical Activity and Apelin Gene Expression and Serum Concentration in Omental and Subcutaneous Adipose Tissues of Obese and Morbid Obese Adults
Introduction: Adipose tissue affects body hemostasis by secreting a variety of proteins named adipokines. Plasma levels of apelin decreases after exercise; however, the evidence on gene regulation in adipocytes is rare. The aim of this study was to investigate the association of daily physical activity and applein gene expression and its serum levels in visceral and subcutaneous adipose tissues...
متن کاملThe role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity.
Glucose metabolism and insulin sensitivity of isolated human adipose tissue was studied as a function of adipose cell size and number. Glucose metabolism by these tissues was closely related to the number of cells in the fragment, irrespective of cell size. Adipose cells of obese individuals metabolized glucose to carbon dioxide and triglyceride at rates similar to adipose cells of nonobese sub...
متن کاملGenetic Predisposition for Type 2 Diabetes, but Not for Overweight/Obesity, Is Associated with a Restricted Adipogenesis
BACKGROUND Development of Type 2 diabetes, like obesity, is promoted by a genetic predisposition. Although several genetic variants have been identified they only account for a small proportion of risk. We have asked if genetic risk is associated with abnormalities in storing excess lipids in the abdominal subcutaneous adipose tissue. METHODOLOGY/PRINCIPAL FINDINGS We recruited 164 lean and 5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2012